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ABSTRACT 

A new method for the calculation of ideal chromatograms is presented. It is based on the solution of 
the eigenvector problem as occurs in the consideration of system peaks. As the resulting eigenvectors are 
tangential to the paths governing the shape of ideal chromatograms. these paths can be found by following 
the direction of the eigenvectors in composition space, this process being equivalent to the numerical 
integration of simultaneous differential equations. with the eigenvectors as the derivatives. The method has 

the advantage that new shapes of composite isotherms do not require more mathematical effort than 
inserting the corresponding expressions in the program source. So far the method has been developed for 

describing the phenomena at the front and the rear of a rectangular band that still has a region where the 
injected concentration is preserved. However. the application to fully deformed bands peaks and to systems 
with more than two components seems entirely feasible. 

INTRODUCTION 

As argued by Guiochon and Katti [l], the prediction of overloaded chroma- 
tograms can be approached from two extremes: on the one hand one can start from 
the solution of the chromatographic transport equations for the infinite dilution, 
linear situation, and treat the non-linearity as a perturbation to that solution. The 
treatment by Haarhof and van der Linde [2] has been shown to be extremely useful in 
that respect [1,3-51. On the other hand, one can start with the solution for dis- 
persionless or ideal chromatography. Often, i.e., in heavily overloaded situations, this 
gives already [l&,7] a fairly accurate impression of the chromatogram that is ob- 
tained when dispersion is also active both in experiment and in simulations of the 
process. A next step could be to try to correct these ideal chromatograms for dis- 
persion, without resorting actually to carrying out experiments or simulations, which 
are both time consuming and expensive. 

As the first approach is limited to relatively small overload (the perturbation 
should be small), the second approach is probably of great future importance for the 
development of preparative liquid chromatography (LC). It is therefore very un- 
fortunate that ideal solutions in themselves can be calculated only for a few specific 
cases. 

0021-9673/91/%03.50 cl 199 1 Elsevier Science Publishers B.V 



96 H. POPPE 

The best known solution of the ideal chromatography problem is probably that 
given decades ago by Helfferich and Klein in their classic book [8] on multi-compo- 
nent chromatography. However, their solution with the h-transform applies only to 
the case of so-called stoichiometric exchange, with constant selectivity coefficients. 
This is an appropriate model for ion exchange, but a great variety of phase systems in 
use in high-performance liquid chromatography (HPLC) cannot be forced into this 
model. 

Recently. Golshan-Shirazi and Guiochon [6,7,9] performed the tremendous 
task of solving the ideal chromatography problem for a two-component competitive 
Langmuir equilibrium. First [6], they derived the solution in a new way, solving the 
equation for the “paths” (see Theory section) with the Clairaut and Offord equations, 
and then derived the complete elution pattern for the two components, for different 
degrees of separation. Second, they compared these results with an adapted version of 
the h-transform (already indicated as being useful by Helfferich and Klein [8]) and 
showed mathematical equivalence [9]. 

As indicated by them, the prospects for using this analytical approach for more 
complicated cases, e.g., for more complicated isotherm expressions and for three- or 
more-component cases, look poor. The analytical equations become very complicat- 
ed, and it is probably too much to expect that the path analysis can be performed in 
such cases. 

The approach taken during this work was to use a numerical version of the path 
analysis. 

THEORY 

Paths and hologram 
As explained at length in HeMerich and Klein’s book [8]. the concept of coher- 

ence is central to the understanding of ideal multi-component chromatography with 
interference. Briefly, it appears that coherence is the ultimate situation towards which 
these systems tend to develop. Coherence means that a given concentration of a 
component is accompanied by the same set of concentrations of the n-l other compo- 
nents, although the time and position of the observation point may vary. A propaga- 
tion velocity is associated with each of such sets of concentrations. 

These coherent changes in concentrations may occur in two versions: those with 
finite slope of concentration against time (or position) curves, i.c>.. continuous chang- 
es, and abrupt, i.e., discontinuous changes. Which one occurs depends on the mathe- 
matical properties of the system, which are complicated and abstract to formulate, 
but can be derived easily from physical principles, as will be discussed below. How- 
ever, the continuous changes, indicated by Helfferich and Klein [8] as diffuse bounda- 
ries, will be discussed first. 

When a given concentration of one component is associated with a given set of 
n-l other concentrations, this represents a point in an n-dimensional space, the com- 
position space. A two-dimensional example is shown in Fig. I. A diffuse boundary is 
represented in this composition space by a line, each point of which connects a 
concentration with n-l others. A collection of such lines may be called a hodogram. 
Each point on such a line, called a path (or I- [lo]), is associated with a retention 
parameter such as the equivalent of the capacity factor k’ or of the RF value. This 
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retention parameter tells how fast the particular point will move through the column 
in relation to the mobile phase velocity. When the coherent boundary is present 
immediately after the injection (this often occurs at the rear of the peak), the position 
in the column after a given time, or the retention time, i.e., the time of occurrence of 
that concentration at the column exit, can be predicted by familiar equations such as 

Z(C,,C*,C+. c,) = UR, = 1’1 . (] ,‘,,,) 

?(C1,CZ,Cj...C”) = (LIr) (I + k’) = (L/v) . ’ ; RF 
F 

(1) 

where 

(CI,c2rc3...C.) 
1’ 
1 

represents the particular combination of concentrations; 
is the mobile phase velocity; 
is time. from injection to the moment that the combination 
(c,,c~.L.~._.(.~) elutes; 

L is the column length 
” 

Ik’ 
is the position in the column of the combination (c1,c2,c3...c,) 
is the “capacity factor”; and 
is the retardation factor. 

It is important to distinguish the “capacity factor” k’ as used here from the meaning 
usually associated with it. namely the ratio of amounts of a solute in the stationary 
and mobile phases. Here the value of X-’ just describes the migration velocity of the 
particular point in concentration space. 

Consider a simple case of a transition from one composition, A, to another, B, 
i.e., when both points A and B are on the same path. and B is the injected solution 
(with a long injection block and chosen carefully to be on the path of A) and A is the 
composition of the mobile phase. The retention along the path will vary (see the 
Langmuir hodogram in Fig. I). Assume that it continuously decreases (it does for the 
Langmuir case when both concentrations in B are larger) when moving from A to B. 
Drawing the rear of such a peak presents no problems; the concentrations close to B 
have moved fast, those close to A have moved less and a “reasonable”, i.e., physically 
acceptable shape is obtained. However, at the front the procedure would yield dou- 
ble-valued concentrations, a curve that retreats in space or time, which is physically 
unacceptable. 

The mathematics of such phenomena is that of shock waves, as discussed by 
Golshan-Shirazi and Guiochon [6]. It is abstract and difficult. In this paper the math- 
ematical approach to deal with this will not be taken. rather physical arguments will 
be used to handle situations such as these. However. it should be recognized that 
eventually, if the approach given here is to be of much use, formal rules for sub- 
stituting the physical reasoning often applied here have to be found in the literature or 
be derived. 

Anyway, rather than an impossible retreating ditfuse boundary, a steep concen- 
tration change, discontinuity, from R to A, occurs at the front of the band. The 
analysis of it is easiest when B represents the composition of the injected solution, and 
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is not yet deformed after or before the shock. Its velocity can then be derived from 
consideration of mass preservation. This is most easily done when graphs (such as 
used here) plot total concentration against position in column. or when elution func- 
tions of mobile phase concentrations against time are used. In both instances the 
position of the shock can be found as the mean value of the found positions or times, 
respectively (retreating), as this is the position of the shock that gives the proper 
amount of material. “Mean value” is to be understood here as the integral of position 
integrated with respect to concentration, divided by concentration difference. That 
this gives a mass-preserving solution can be derived as follows. 

The retreating solution of the differential equation is one that “conserves 
mass”; the total amount present does not change with time. This amount equals the 
integral with respect to position of the total concentration. or of the mobile phase 
concentration with respect to time. Taking the average position or time in both 
graphs therefore does gives the proper location of the shock. 

However, this reasoning can be applied only in this simple form when the two 
extreme composition points of the shock remain the same during column transport; if 
there is no flat profile on both sides, the intensity of the shock is changing all the time 
and a more intricate form of the mass balance has to be applied. 

The Folio,vpath procedure 
In a previous paper [I I] and a paper by Golshan-Shirazi and Guiochon [12] it 

was discussed how the eigenvectors and eigenvalues describe the properties of system 
peaks and the possibilities for indirect detection, in both chromatography and elec- 
trophoresis. In the following we shall limit the discussion to chromatography. Briefly, 
it was shown [I 1,121 that, for small deviations from the mobile phase composition, the 
distribution equilibrium in general can be described by a matrix equation, given the 
vector, c,, consisting of the changes in each of the n stationary phase concentrations 
c,$, as a function of the vector c,,, of changes in the mobile phase concentrations, C,,j: 

c, = S-from-M. c,,, 

The matrix S-from-M usually has n eigenvalues, A0 through %,_1 with associated 
eigenvectors e,, through e,,. The n values of i represent capacity factors, k’, at which 
the particular coherent disturbances are eluted. The set of II resulting eigenvectors 
describe the proportions in which the n constituents vary in concentration in each of 
the n disturbances. That is. if one injected a composition that differs from the mobile 
phase by exactly the ej,i values multiplied by a small number 0’ giving the number of 
the eigenvalue, i giving the number of the component to which the component of 
eigenvector ej applies), it is transported as one peak with capacity factor Aj. Injected 
compositions that cannot be described as one eigenvector will be split up, in general 
into n peaks of which the capacity factors are the 1’s. 

This approach has been shown [12-l 51 to give an adequate description of sys- 
tem peaks and indirect detection phenomena. which had previously puzzled many 
workers. However, it was also noted in the earlier paper [I l] that the eigenvectors 
thus obtained are the tangents to the paths in the n-dimensional composition space 
and that they describe the coherent boundaries that would develop in ideal chromato- 

graphy. 
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It follows that one can move approximately from one point on a path to anoth- 
er in its vicinity, after the eigenvector has been calculated. Thus there is a way, at least 
an approximate one, to find a full path starting from a given point in composition 
space. It consists of repeatedly computing the eigenvector and moving to a new point 
on the path. By starting at several points one can derive the picture of the hodogram 
with any degree of detail. 

The program that forms the basis of this report relies on a procedure called 
“Followpath”, taking a starting solution. “sol”, as the argument. Sol is a vector of n 
numbers (2 in the implementations described in this paper), giving the concentrations 
in the mobile phase. With any given expression for the distribution of the n compo- 
nents to the stationary phase (e.g., Langmuir, ion-pair distribution equations) the 
concentrations of the stationary phase can be calculated. (A short comment on the 
forms used, especially the omission of certain factors such as the phase ratio and the 
surface necessities for a composite Langmuir adsorption is to be found at the end of 
this section.) 

As the eigenvector treatment works with the changes in the concentrations, the 
derivatives of these expressions are needed. These have been obtained during this 
work by numerical differentiation: the concentrations of compounds j = 0 to n-l, 
cm,j, are changed by a small amount, “eps”, successively and the resulting changes in 
the stationary phase concentrations c,.~ are noted. Divided by eps these form the 
elements [in] of the matrix that is needed. This matrix was above indicated by “S- 
from--M’. 

Numerical differentiation has the important advantage that the study of a new 
type of distribution behaviour merely involves introducing other distribution equa- 
tions in integral form; the often painstaking analytical differentiation to obtain all the 
matrix elements is not needed. The full procedure could be carried out by just using 
S_from_M with, as indicated, eigenvalues corresponding to capacity factors, k’. 
However, it is useful to consider also other matrices carrying the same information; 
these are as follows: 

(i) M-from-S, calculation of mobile phase concentration changes from sta- 
tionary phase concentration changes. This is unusual; however, at least one [IQ 
model exists where explicit expressions are obtainable only for this case. M_from_S 
is the inverse of S_from_M, and numerical values were obtained by the Gauss- 
Jordan algorithm. Its eigenvalues correspond to Ilk’. 

(ii) T_from-M, calculation of the total concentration changes (see the remark 
at the end of the section on expressions and units) from the mobile phase concentra- 
tion changes. It is obtained by adding I to the diagonal elements of S_from_M The 
eigenvalues equal k’ + 1. 

(iii) M-from-T, calculation of the mobile phase concentration changes from 
the changes in the total concentrations. This matrix is obtained by inversion of T_ 
frotn_M. Its eigenvalues are the RF values of the corresponding disturbances. The 
use of this form might be useful in cases where mass preservation is to be considered 
in studies involving spatial distribution, rather than elution function (see below). 

It should be noted that when finding eigenvalues and eigenvectors for all these 
four matrices one obtains different eigenvalues [although the one set can be easily 
found from the other, e.g., by RF = I ,!(I + k’)], but the same eigenvectors. This is 
easily seen when one considers that for an eigenvector ej with eigenvalue ;lj it holds 
that 



loo H. POPPE 

S-from-M * ej = lj . ej (4) 

Stationary phase and mobile phase changes are in the same proportion 3.j for all 
components. Thus the changes of. e.g., the sum of both concentrations are also in 
proportion. 

After the n eigenvectors have been found for the first time it is to be decided 
which one of these gives the direction to be followed (e.g.. one can choose the one 
with the largest capacity factor). Denoting this one byj = ,f(ffor “follow this one”), a 
next point on the path is found by adding the components of the vector cf to the 
components of “sol”. The size of the step is controlled by a parameter 8, by which the 
eigenvector components are multiplied before carrying out the addition. Thus, for the 
two-component system considered in this paper: 

solo= sol0 + /? . ef.o 

soil= sol, + /? . ef,l 

In fact, as the ej emerge normalized from the eigenvector procedure (i.e., the sum of 
the squares of the components is 1, the euclidic length is 1). the value of /I is the 
distance travelled in composition space during such a step. 

For the new point described by the new value of “sol”, the eigenvector is again 
calculated, and a new step is taken in the new direction. It might occur during the 
Followpath procedure that the step size, /I. is too large: following the tangent rather 
than the path curve itself is only sufficiently accurate if either the curvature is small or 
the step size is small. Therefore, after each tentative step it is checked if the direction 
indeed has changed only insignificantly. 

The change in direction is measured by the correlation coefficient, r, sum of the 
cross-products of the elements of previous and newly considered vector (division by 
the square root of the euclidic lengths of both is not needed as both are 1). A value 
Y = 1 corresponds to exactly the same direction. In that case the path is linear in 
composition space, a situation occurring with competitive Langmuir adsorption. as 
discussed at length by Guiochon and co-workers. 

Values of r larger than 0.9999 were treated as acceptable. When smaller values 
occurred, the value of B was decreased repeatedly by a factor of two until a sufficiently 
large value of r was obtained. When r exceeded 0.99999, the step size /? was doubled. 
in order to speed up calculations. 

A rough guess of the errors made this way can be made as follows. A correla- 
tion coefficient of 0.9999 means that the angle between the vectors equals J( 1 - r) = 
0.01 rad. Thus on each step of size fi one deviates 0.01 /I from the correct path. 
Suppose a path is a full circle (an extreme case; for useful phase systems curvature in 
genera1 will not be very strong) with radius 1. One return to the point of origin there 
would be a deviation of 0.0628. Thus the procedure is probably accurate to better 
than a few percent in composition space. 

The calculation of r was needed for another reason: as indicated, from each 
point in composition space n paths emerge (2 in this work). The eigenvalueeeigenvec- 
tor procedure gives the n results in an unpredictable order, and precautions have to be 
taken to avoid hopping from one direction to another that is more or less orthogonal 
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to it. Thus, each time the relevant eigcnvalue i,- and corresponding vector e, were 
identified as the one having the highest correlation. I’. with the previous vector. 

As indicated, the eigenvalues obtained during the iteration, either in terms of k’ 
(when S_ from_Mis used) or in terms of RF (when M from_Tis used) contain 
essential information; they can be used to predict either the retention time or the 
spatial position in the column of the specific composition point. Thus, the full in- 
formation on the behaviour of the components in the phase system used is contained 
in an (n+ 1)-dimensional plot. composition space with an additional dimension in 
which the 3. (k’ or RF) value is plotted. In Figs. 1, 3 and 5 this is approached by 
inserting the numbers for the k’ values on the path lines. 

The program needs additional tricks for the following reasons: 
(1) To make sure that a path is followed in both directions. Thus, after a path is 

followed until the edge of considered composition space is reached, one has to return 
to the original composition and “go the other way”. 

(2) To make sure that the II (2 here) paths emerging form one point are plotted. 
Thus, e.g., first the higher capacity factor (at the point of origin) is handled, and next 
the smaller capacity factor. Altogether, 2n (here 4) “rays” emanate from a point. 

(3) To obtain a reasonable distribution of plotted paths over the composition 
space considered to be of interest. This was done here by choosing a rather arbitrary 
starting composition. In each of the resulting four main “rays”, a stop was made 
when a given distance had been travelled. From there the other path was followed 
leading to two new rays. In this way usually a reasonably filled but not overcrowded 
hodogram was obtained. 

Description of the distribution equilibrium 
In the following the two-component composite Langmuir isotherm will be used 

to demonstrate the principles used here. 
The concentration in the stationary phase, either per unit of surface area or per 

gram of adsorbent, is generally modelled as 

“J = 1 + K1~,,,,h, + K2cm.~h2 

where the bs represent the areas covered by a mole of material. They have been the 
subject of interesting discussions [ 171. when it was noted that widely different b’s for 
the two components can lead to intersecting isotherms, i.e., at low concentration the 
one component is better adsorbed. whereas at higher concentrations the reverse case 
occurs. 

In order to correlate the k’ values in the column with eqn. 4, one needs in 
addition the phase ratio. q, e.g., in square metres per millilitre of mobile phase. 
Altogether, one ends up with unwieldy expressions that are especially impractical in 
general considerations, because of the lengthy equations. and in simulations, because 
of increased program run times. It is our opinion that in such general discussions, as 
well as in simulations, it is very profitable to “normalize out” the h’s in addition to q. 
This can be done as follows. 

In the first place the concentrations in the stationary phase are defined as the 
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amount adsorbed in a given intinitesimal part of the column, divided by the volume of 
mobile phase in that part. As there is a constant ratio between square metres and the 
mobile phase volume, there is no loss of generality when doing this. The result is that 
k’ and the distribution constant K are the same. The sum of cm and es is now equal to 
the “total concentration” used above. c,, total amount in an infinitesimal section of 
the column over the associated volume of mobile phase. 

In the second place, it can be noted that the way amounts and concentrations 
are expressed is arbitrary. Also, different units can be used for different components. 
It lies at hand to multiply the concentration c,.j by bj to form normalized concentra- 

tions (in both phases). Again, there is no loss in generality. and all situations can still 
be expressed. The Langmuir expression can then be written as 

1 + KIG,,,I + K2cm.2 
(7) 

the KS being the same as those in eqn. 6. From this approach. which is used through- 
out this work, it follows, e.g., that special phenomena brought about by strongly 
differing b values can be studied (simulation, analytical) by means of the regular 
model given in eqn. 7, by simply increasing the amount injected of compounds having 
a large b. 

The advantage of this is that the great multitude of different cases met with in 
discussions or preparative chromatography are at least partly reduced. All situations 
that can be modelled, e.g., by the simple composite Langmuir expressions can be 
represented by choosing proper values for KS and the injected concentrations. 

EXPERIMENTAL 

All programs were written in Turbo Pascal (Borland International, Scotts Val- 
ley, CA, USA) version 4.0. For the present two-component case the eigenvector 
problem was solved by solving the quadratic equation, with the procedure as de- 
scribed in ref. 18. For three and higher component systems the procedures ELMHES, 
HQR and SVDCMP from the same source were applied. A custom-written package 
for translating graphic calls in Turbo 4.0 into graphics commands for a laser printer 
was used to obtain the figures shown. 

Column transport simulations were implemented according to the approach 
described by Golshan-Shirazi and Guiochon [ 191. However, the code as described by 
them was first translated into Pascal. and next modified to allow the presentation of 
spatial distributions in the column rather than elution functions. Also, in many cases 
another choice of the time and position increments, Ar and A:, was made. In those 
cases the numerical dispersion was made practically zero (at least for the most re- 
tained disturbance), rather than equal to a predetermined amount of dispersion, as 
the purpose here was to compare results from two approaches for ideal chromatogra- 
phy. The simulation program was thoroughly checked for conceptual or program- 
ming errors by running experiments with predictable results. such as those with only 
pne component, or with minor disturbance injections leading to “system peaks” and 
indirect detection phenomena. Retentions and peak intensities as well as mass conser- 
vation agreed entirely satisfactorily (i.e., deviations could be explained as the result of 
numerical truncations). 
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RESULTS AND DISCUSSION 

Langmuir case 
Fig. 1 gives the paths as calculated for a two-component Langmuir isotherm, 

according to eqn. 5, with K0 = 2 and K1 = 3. This result is trivial, in the sense that 
the lines can be much more easily calculated according to the procedure given by 
Golshan-Shirazi and Guiochon [6] using the Offord and Clairaut equations. Indeed, 
doing this produces (not shown) an identical figure. 

In Fig. 1 the numbers written along the lines represent the capacity factor, k’, 
corresponding to the retention of the path at that position. Thus, if the path exists 
from the very start of the elution, the position of the composition point in the chro- 
matogram, or in the column at a given time, can be predicted. This concept, in 
combination with the general method for finding the paths, would allow the pre- 
diction of the column history for any kind of composite distribution isotherm. 

The implementation of this concept is, however. not without difficulties, and at 
present requires the application of intuitive notions or physical insight. This will be 
illustrated while discussing the results obtained with this form of isotherm, although 
in themselves these results are no more than a partial reproduction of the results of 
Golshan-Shirazi and Guiochon [6] who derived the complete set of expressions for 
the elution curves of a still partially mixed band. 

In Fig. 1 point T represents a hypothetical composition of an injected plug. This 

t 
Ccnc. 2nd Cmpnt 

0.500 w Cow. 1 rst Cmpnt 

Fig. I. Hodogram for Langmuir isotherm, according to eqn. 7, with K, = 2. K, = 3. Numbers on the 
lines are capacity factors, multiplied by 100. Concentrations on axes are mobile phase concentrat 
Cmpnt = Component. 

path 
ions. 
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is supposed to be already in equilibrium with the stationary phase. so that in fact 
much more is injected. (This rather artificial modelling of injection is chosen in these 
first exercises just to facilitate insight; in later, more practical, applications one should 
of course consider the influx of a solution into an empty column.) 

The rear of this plug represents a transition in the composition space from the 
origin, 0, the empty solvent, to I; at the front the opposite transition occurs. For such 
transitions, following the paths in the hodogram, there are in general two routes (in 
fact, the Langmuir case gives three routes, as can be seen, but one is ruled out for 
physical reasons). Which way is taken depends on whether the front or the rear of the 
peak is considered. At the very rear of the band. still close to the origin, one should 
find a path with the highest capacity factor. That is the path coinciding with the 
vertical axis (c,.* = 0). corresponding to pure component 1 (the most retained one). 
This path is followed until arrival on the intersection with the path through I. Next 
this mixed band path is followed; see the dotted lines in Fig. I starting at point I. 

Note that on both paths the capacity factor decreases, and position increases, 
while following the path, and thus approaching the original injected concentration at 
the (still) flat top of the band. This indicates that no physical impossibilities are 
implied by this solution and indeed a diffuse boundary is described. 

As noted by Golshan-Shirazi and Guiochon [9]. the difference in k’ value for the 
two paths at the same composition (the intersection point) explains the occurrence of 
a plateau of constant concentration of component 1. where it seems that this compo- 
nent leaks out of the mixed band. 

It should be noted that in the algorithm (Followpath) that produced the circles 
in, e.g., Fig. 2, the opposite route was followed, starting from the injected concentra- 
tions. For the description of the rear of the band the path with the smallest capacity 
factor was first followed, making sure that both concentrations decreased. When the 
concentration of the least retained component was found to be zero (the procedure 
was targeted to reach that point), the procedure switched to the alternative path, that 
following the vertical axis in Fig. 1, leading to a classical one-component Langmuir 
boundary. 

In the algorithm for the calculation of the front of the band the path with the 
highest capacity factor was first followed, making sure that the concentration of 
component 1 decreased, that of 0 increased, because (one of the physical reasonings 
resorted in this work to make the system work) it is known that by displacement a 
concentration effect on the less retained component occurs. When the concentration 
of the most retained component was found to be zero. the procedure switched to the 
alternative path, that again giving a classical one-component Langmuir boundary, 
albeit retreating. This route corresponds to that indicated by the dashed lines starting 
at point I in Fig. 1. 

All RF values found were multiplied with the time (velocity assumed to be I), 
added to the starting position of the rear or front, respectively. and plotted in Fig. 2 as 
circles. Fig. 2 shows the graphical implementation in terms of column “maps” for the 
two components. The full line gives the results of a simulation with this distribution 
equilibrium. Best efforts were made to make dispersion as small as possible in this 
simulation experiment; for one thing it takes several hours to reach this point oft = 
4000. Superimposed on this are circules that were calculated from the Followpath 
approach. As the starting point the injection was taken. 
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Slice no 5ooo I 

ccmp[l], m=o.33 

I ccmp[O], m = 0.26 

slice no 5ooo I 

canlp[o], Rf=o.z5 

Fig. 2. Distribution of the two components along the lcnpth of the column at’tct. .t time lapse of (A) 4010 

units or (B) 6007 units, for Langmuir isotherm as in Fig. I. Injection was done by saturating slice No. 50 
(vertical line at left) to 1050 with a mobile phase with co = 0.2 and c, = 0.2. and forcing the stationary 

phase concentration to be in equilibrium with that mobile phase. Mobile phase velocity assumed to be 1 
slice per time unit. Component concentrations plotted are total concentrations. c, = cE + c,. Full line, results 

of Guiochon-type simulation; circles. results from path calculation. 

As can be seen in Fig. 2, the Followpath approach yields a fairly accurate 
estimate of the distribution functions for the components. Where diffuse boundaries 
occur, the (full) lines obtained by simulation are a very good match with the circles 
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obtained with the Followpath procedure. At the front of the peak the two lines 
formed by the circles represent physically impossible retreating lines. However, the 
shocks given by the numerical simulation are indeed at the average position of the 
circles. Note that two paths follow the axis of component 0 or component 1 in the 
hodogram, i.e., the circles in the column map in Fig. 2 are on the axis for one of the 
components. 

However, as soon as the flat top of the band at the injected concentration is 
“eroded away” [9], the applied procedure fails (Fig. 2B). As indicated above, the 
shocks then no longer have a constant intensity, and their positions have to be calcu- 
lated with a more complicated mass balance consideration. Also. another diffuse 
boundary develops. The latter can be handled in the indicated way, with the exception 
that its time and place of birth differ from the injection time and either front or rear of 
the injection plug. Rather the place and time of birth should be calculated separately. 

Such problems cannot be handled yet, although we have confidence that they 
can be solved and that the solutions can be put into fairly general code. However, at 
this stage meaningful results can only be obtained for situations where the injected 
concentrations are still present in the band. 

Quadratic Langmuir-type equilibrium expression 
Guiochon’s group [20] have argued that the composite Langmuir expression 

can be generalized by substituting polynomes in the various mobile phase concentra- 
tions for the expressions KiCi. In order to demonstrate the flexibility of our approach, 
we carried out calculations with such an isotherm. Its exact shape was as follows: 

Koocmo + Qoo(.m,02 + QoIc,,.o~.,,I 
C&O = 

1 + Kooc,,o + KIIC,,I + Qoo(*m,02 + QIIG,.,~ + Qo~ctn,ocm,~ 

KIIC,,I + QII(.~,,I’ + Qo,L’~.oL.~.I 
es,1 = 

1 + Koocm,o + KIIG,,I + Qooc,.02 + QIIC,,,.I~ + QoI~,.oc,,~ 
(8) 

Followpath calculations were carried out and compared with transport simulations 
for such an isotherm with Koo = 1, Kll = 1.5, Qoo = 2. Q,, = 3, Qol = 1. The 
results are shown in Fig. 3 as a hodogram and in Fig. 4 as a prediction of column 
maps (circles), together with the result of the numerical simulation (full lines). 

Inspection of the hodogram shows that the paths are curves, as is to be expect- 
ed. Still, the structure of the Langmuir hodogram can be distinguished. More impor- 
tant, on a number of paths (those with a negative slope) the rclcntion does not change 
monotonously, but first goes up and then goes down. This means that, no matter if 
one considers the front or the rear of the band, a transition is possible consisting 
partly of a shock and partly of a diffuse boundary. This is similar to what occurs in 
the one-component case when the isotherm has a sigmoid shape, i.e., the second 
derivative changes sign over the range of interest. 

Fig. 4, given the results of the Followpath procedure in comparison with those 
of the simulation, clearly shows this behaviour. Considering first the rear part of the 
curves, coming down from the injected concentration one first has a “normal” 
boundary. and in this part the agreement with the simulation is very good. However. 
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0.500 -> Cont. lrsi Cmpnl 

Fig. 3. Hodogram for quadratic Langmuir isotherm, according to eqn. 8, with K,, = 1, K,, = 1.5, PO0 = 
2. Qll = 3. Q,, = 1. Numbers on the path lines arc capacity factors. multiplied by 100. Concentrations on 

axes are mobile phase concentrations. 

I Ccmp[l], nf=oa 

I comp[q, R(=o.40 

Fig. 4. Distribution of the two components along the length of the column after a time lapse of 3005 units, 
for quadratic Langmuir isotherm as in Fig. 3. Injection was done by saturating slice No. 50 (vertical line at 

left) to 1550 with a mobile phase with c,, = 0.7 and c, = 0.5, and forcing the stationary phase concentra- 
tion to be in equilibrium with that mobile phase. Mobile phase velocity assumed to be 1 slice per time unit. 
Component concentrations plotted are total concentrations. c_ + cm. Full line, results of Guiochon-type 
simulation; circles. results from path calculation. 
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when the concentration of component 1 approaches zero, the curve formed by the 
circles changes to a retreating line, predicting a shock. This is not apparent from the 
simulation (full line); this is probably due to the influence of (numerical) dispersion. 
The line describing the transition to where both concentrations are zero (far left side 
of the band in Fig. 4) shows a similar behaviour. Also here the shock nature is not 
visible in the simulation. 

The front part of the band in Fig. 4 shows reasonable agreement for the onset of 
the concentrated band of component 0, pushed forward by the other component. 
However, it can be seen that the Followpath procedure does predict a much higher 
concentration for component 0 than is actually observed, This can be explained as 
follows. The program as it is moves along the path until the concentration of compo- 
nent 1 is zero. However, at that point its velocity is higher than that of the shock 
described by the alternative path starting from the point of injection composition; the 
upper part of the diffuse boundary moves faster than that shock. Thus the path 
should have been followed up to a point P where its velocity equals that of the shock 
connected with the transition from P to zero. 

Synergistic sorption 
Another example considered is that of synergistic sorption, an adequate model, 

e.g., for ion-pair chromatography. Here the isotherm is 

co = Kooro + QOICOC, 

Cl = KIICI + QOICOCI 
(9) 

where the term with QoI stands for, e.g., ion-pair formation and the K’s for simple 
sorption of the constituent ions. The hodogram obtained with K,, = 2, K1 1 = 3 and 
QoI = 2 is shown in Fig. 5. 

Note that the capacity factors along the axis are constant, 2 and 3, respectively, 
for the two components, in agreement with the fact that when the other component is 
absent eqn. 9 gives simple linear partition. The curvature of the paths is striking, as is 
the fact that above a given concentration of 1 there appear to be no intersections with 
the corresponding axis. 

The prediction of column maps is given in Fig. 6, again compared with the 
simulation experiment. As can be seen, the concentration of component 1 at the end 
of the band is predicted, with good quantitative agreement. Note that all paths are 
“natural”; there are no shocks. The paths with one component (far left and far right 
of the band) are vertical in the column map, as there is a constant capacity factor. 

CONCLUSIONS 

It has been shown that numerical proccdurcs can be applied to derive the shape 
of paths in composition space, together with the corresponding retention data. The 
prediction of elution functions and column maps for ideal chromatography seems to 
be possible with this approach. The main drawback of the present implementation of 
the idea is that physical, more or less intuitive, arguments have to be used to decide 
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Fig. 5. Hodogram for synergistic isotherm, according to eqn. 9, with K,, = 2. K,, = 3, Q,, = 2. Numbers 
on the path lines are capacity factors, multiplied by 100. Concentrations on axes are mobile phase concen- 
trations. 

Slice no Kow I 

comp[l], w=oa 

I c~mp(o], m=o15 

Fig. 6. Distribution of the two components along the length of the column after a time lapse of 61 I I units, 
for synergistic isotherm as in Fig. 5. Injection was done by saturating slice No. 50 (vertical line at left) to 
1050 with a mobile phase with c0 = 0.2 and c, = 0.2, and forcing the stationary phase concentration to be 
in equilibrium with that mobile phase. Mobile phase velocity assumed to be I slice per time unit. Compo- 
nent concentrations plotted are total concentrations, c,+c,. Full line, results of Guiochon-type sim- 
ulation; circles, results from path calculation. 
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which path is to be followed, and to what limit, and when to change path. Also, only a 
simple situation, just a broad band that broadens on one side and leading to dis- 
placement on the other, can be properly handled at this stage. However, it is believed 
that the rules for choosing paths can be formalized and put into automatic code. In 
addition, it is believed that the application of the calculation scheme can be extended, 
by proper calculation and decision schemes, to cases where. e.g.. a diffuse band or 
shock originates during the chromatographic transport. 

The potential advances that could be obtained when these aims can be reached 
are significant. It would be possible to predict ideal chromatograms in an easy man- 
ner, by just inserting the code for the distribution equilibrium into the program, for 
arbitrary isotherm shapes. There also appear to be no unsurmountable problems in 
applying this approach to systems with more than two components. 
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